

HEIA-FR | Bd de Pérolles 80 | CH-1700 Fribourg | t. +41 26 429 66 11 | www.heia-fr.ch

Computer science

BACHELOR ABSTRACT | JULY 18

Context

A majority of apps among the

popular ones manipulate

sensitive data or expose

remotely accessible features.

Bugs or misuse of features

provided by the operating

system puts the user at risk of

impersonation, loss of money,

data theft, etc.

Consequently, the need to verify that a given

functionality is implemented correctly within an

application becomes more and more prevalent.

Contributions

The contribution of

this work focuses

on three aspects

of security audits.

The first is a

testing guide that

compiles many of

the most common

issues in iOS

apps. The second revolves around the need to

identify and understand algorithms within

closed-source software. The third relates

to jailbreak detection.

Testing Guide

Finding vulnerabilities in software

requires both a methodology that does

not depend on the underlying technology

and the ability to recognize a wide range

of patterns of software issues. While the

former is trained by experience, the latter

can be quickly digested if the right

material is available. As such, the proposed

Testing Guide allows a security engineer to

conduct a security assessment with minimal

preexisting knowledge on iOS.

Reverse Engineering

When performing software security

assessments, having the source code is

always a plus. In spite of that, the hazards of

the profession often require to understand or

modify behavior in closed-source systems.

Consequently, a black-box testing guide is

proposed as well. It delves into reverse

engineering of iOS applications and make them

spit meaningful information.

 iOS Application Security

ACRONYM IOSSEC

PROPOSED BY SCRT Information Security

STUDENT-S Vladimir Meier

PROFESSOR-S Jean-Roland Schuler & Rudolf Scheurer

EXPERT-S Luca Haab

No B18I14

TYPE Bachelor Thesis

CONTACT vladimir.meier@hotmail.com

HEIA-FR | Bd de Pérolles 80 | CH-1700 Fribourg | t. +41 26 429 66 11 | www.heia-fr.ch

Computer science

BACHELOR ABSTRACT | JULY 18

Jailbreak

On iOS, “jailbreaking” roughly consists in

disabling code signing verification. Users would

come to that for mainly two reasons:

1. An iOS device refuses to install unsigned or

untrusted applications, meaning an

iPhone’s buyer is not allowed to install

whatever it would like on its smartphone.

2. Apple reviews the applications submitted by

the developers before publishing them on

the App Store. The company does not

hesitate to reject the ones that make

use of private APIs or that offer

features Apple does not want its

devices to possess.

Jailbreak Detection

More and more

applications attempt

to determine whether

they run on a

jailbroken device and

block access to features

if that is the case. This is

a problem for security

engineers, as they rely on tools that perform

privileged actions unavailable on factory

devices.

To tackle this problem, a study of state-of-the-

art jailbreak detection techniques precedes a

methodology to defeat such protections, with a

practical example on a popular banking

application. Afterwards, a proof-of-concept of

automatic jailbreak detection bypass is realized

using runtime instrumentation of platform APIs.

Evaluation

The Testing Guide is applied on a famous

password manager and leads to the discovery

of a dozen of issues, ranging from benign to

critical.

Future Works

Assessing a software’s security involves many

repetitive tasks. In addition, software

weaknesses often manifest themselves in

a recognizable manner. As such,

automated binary analysis may help improve

the scalability of vulnerability detection in

iOS applications.

Sources

[1] iPad: https://www.apple.com

[2] pentest: https://agsnig.com/penetration-testing.html

https://www.apple.com/

